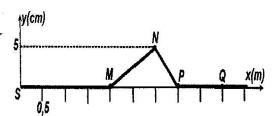
UNIVERSITE HASSAN II AIN CHOCK FACULTE DE MEDECINE DENTAIRE *** CASABLANCA***



Concours d'entrée 2010/2011 Epreuve de physique

- la documentation et les téléphones portables sont interdits.
- Parmi les réponses proposées, il n'y a qu'une seule qui est juste.
- Réponse juste = 1 point ; réponse fausse = 0 point.
- Pour chaque question, répondre sur la fiche de réponses par une croix 🗶 dans la case correspondante.
- la fiche de réponses est à remettre, correctement remplie à la fin de l'épreuve.

Exercice I : Les ondes

A l'instant t = 0 ,Une onde transversale de célérité V est créé à l'extrémité S d'une corde, La figure ci-contre représente l'aspect de la corde à l'instant t=3,5 s

Q.1 : la célérité V de l'onde est :

	1			T
(A): $V=1m/s$	(B): $V = 1cm / s$	(C): $V = 0,2m/s$	(D): $V = 0.1m/s$	(E): autre réponse

Q.2: l'onde atteint le point Q à l'instant t_1 :

	vanistavimatausiaitym die Julia 198			1
(A): $t_1 = 3.5s$	(B): $t_1 = 4.5s$	(C): $t_1 = 5,5s$	(D): $t_1 = 6.5s$	(E): autre réponse

Q.3: le point Q atteint son amplitude maximal $(y_0 = 5cm)$ à l'instant t_2 :

ſ					
1	$(A): t_2 = 4s$	(B): $t_2 = 4.5s$	(C): $t_2 = 5s$	(D): $t_2 = 5.4s$	(E): autre réponse

Exercice II : Physique nucléaire

Première partie : L'iode 131 utilisé en médecine a une demi-vie de 8 jours.

On donne: $N_A = 6,02.10^{23} \, mol^{-1}$; $M(^{131}I) = 131 g.mol^{-1}$.

Q.4: le nombre de noyaux N_0 dans un échantillon d'ide ^{131}I de masse m=1g est :

(A):	$N_0 = 4,6.10^{21}$	(B): $N_0 = 4,6.10^{22}$	(C):	$N_0 = 4,6.10^{20}$	•
(D):	$N_0 = 4, 6.10^{-21}$	(E) : autre réponse			

Q.5: la constante radioactive λ vaut :

(A): $\lambda = 9.10^{-6} s^{-1}$	(B): $\lambda = 10^{-6} \text{s}^{-1}$	(C): $\lambda = 9.9.10^{-6} s^{-1}$	(D) $\lambda = 0.9.10^{-6} s^{-1}$:	(E):autre réponse
(7.7) 17 2720 5	(0)	(0). 10 3,5110 5	(0) 10-0,2.10 3 1	

Q.6: l'activité initiale A_0 de l'échantillon est :

			· · · · · · · · · · · · · · · · · · ·	T
$(A): A = 6.4.10^{15} Ba$	(B): $A = 4.6.10^{-15} Ra$	(C): $A = 4.6 \cdot 10^{15} Ra$	(D): $A_0 = 46.10^{15} Bq$	(F): outre réponse

Deuxième partie : dans un réacteur nucléaire l'une des réactions de fission possibles est :

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{94}_{38}Sr + {}^{140}_{Z}Xe + x {}^{1}_{0}n$$

Données: $1u = 931,5 MeV/C^2$

Noyau	94 Sr	1_0 n	$^{235}_{92}U$	140 X e
masse	93,89446 и	1,00866 и	234,99332 u	139,89195 u

Q.7: les valeurs de Z et de x sont :

(A): (Z=54; x=3)

(B): (Z=55; x=2)

(C): (Z=54; x=2)

(D): (Z=54; x=1)

(E): autre réponse

Q.8: la perte de masse Δm vaut :

(A): $\Delta m = 0.29825u$

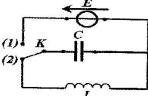
(B): $\Delta m = 0.19825u$

(C): $\Delta m = 0.39825u$

(D): $\Delta m = -0.19852u$ (E): autre réponse

 $\mathbf{Q.9}$: l'énergie ΔE en MeV libérée par la fission d'un noyau d'uranium ^{235}U est :

(A): $\Delta E = 184,67 Mev$


(B): $\Delta E = -184,67 Mev$

(C): $\Delta E = 148,67 Mev$

(D): $\Delta E = -148,67 Mev$ (E): autre réponse

Exercices III: dipôle (L,C)

A l'instant t = 0 ,un condensateur de capacité $C = 1\mu F$,chargé sous une tension E=24V est relié à une bobine de résistance r négligeable et d'inductance L = 10mH (figure ci contre).

 $\mathsf{Q.10}:$ l'équation différentielle vérifiée par la tension $u_c(t)$ aux bornes du condensateur est :

(A): (B): (C): (D): $\frac{d^2 u_C}{dt^2} + \frac{u_C}{LC} = 0 \qquad \frac{d^2 u_C}{dt^2} - \frac{u_C}{LC} = 0 \qquad \frac{d^2 u_C}{dt^2} + \frac{u_C}{\sqrt{LC}} = 0 \qquad \frac{d^2 u_C}{dt^2} - \frac{u_C}{\sqrt{LC}} = 0$

(E): autre réponse

 $\mathbf{Q.11}$: la période propre des oscillations T_0 est :

(A): 6,28.10⁻⁴ s

(B): $6,28.10^{-9}$ s

(C): $5,28.10^{-4}s$

(D): 4,28.10⁻⁴s

(E):autre réponse

Q.12: la valeur de la tension $u_c(0)$ à l'instant t=0 est:

(A): $u_c(0) = -24V$ (B): $u_c(0) = 24V$ (C): $u_c(0) = 0V$

(D): $u_C(0) = 2,4V$

(E) : autre réponse

Q.13 : la valeur numérique de l'intensité i(0) à l'instant t=0 est :

(A): i(0) = 0,24A

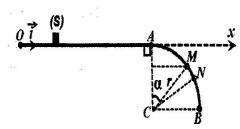
(B): i(0) = 0

(C): i(0) = 2,4A

(D): i(0) = 24A

(E):autre réponse

 $\mathbf{Q.14}$: la charge maximale \mathcal{Q}_{m} du condensateur est :


(A): $Q_m = 2.4 \mu C$ (B): $Q_m = 240 \mu C$ (C): $Q_m = 24 \mu C$ (D): $Q_m = 0.24 \mu C$

(E) : autre réponse

Q.15 : la solution de l'équation différentielle est $u_c(t) = E \cos(\frac{2.\pi}{T}t + \varphi)$, l'expression littérale de l'intensité i(t) est :

(A) : $i(t) = -\frac{CT_0}{2\pi} E.\cos(\frac{2\pi}{T_0}t + \varphi)$ (B) : $i(t) = -C\frac{2\pi}{T_0} E.\cos(\frac{2\pi}{T_0}t + \varphi)$ (C) : $i(t) = -C\frac{2\pi}{T_0} E.\sin(\frac{2\pi}{T_0}t + \varphi)$ (D) $i(t) = -\frac{CT_0}{2\pi} E.\sin(\frac{2\pi}{T_0}t + \varphi)$

(E): جواب آخر

Exercice IV: Mécanique

un corps solide (S) de masse m=200g assimilable à un point matériel est en mouvement sur une trajectoire OAMNB constitué de deux parties le mouvement de (S) se fait avec frottement uniquement sur la partie OA.

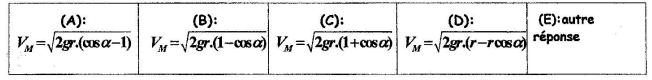
- La partie OA rectiligne horizontale de longueur OA = 80cm
- La partie AMNB circulaire de centre C et de rayon r = 50cm

A l'instant t=0 le corps (5) est envoyé du point O (origine des espaces) avec une vitesse $V_o=2m/s$ il atteint le point A avec une vitesse nulle ($V_A=0$), et poursuit son mouvement sur la partie OAMNB.

Donnée: $g = 10m.s^{-2}$

Q.16: $W_{QA}(\vec{R})$, travail de la réaction \vec{R} lors du déplacement OA est :

(A): $W_{OA}(\overrightarrow{R}) = -4J$	(B): $W_{O4}(\vec{R}) = -0.4J$	$(C): W_{OA}(\overrightarrow{R}) = 4J$	(D): $W_{04}(\vec{R}) = 0,4J$	(E):autre réponse
---	--------------------------------	--	-------------------------------	-------------------


Q.17: l'intensité f de la force de frottement est :

(A):
$$f = -0.5N$$
 (B): $f = 0.5N$ (C): $f = -5N$ (D): $f = 5N$ (E): autre réponse

Q.18: l'équation horaire x(t) du mouvement de (5) le long du trajectoire OA est :

(A):	(B):	(C):	(D):	(E):autre réponse	- CO
$x(t) = -1,25t^2 + 2t$	$x(t) = -1,25t^2 - 2t$	$x(t) = -12,5t^2 + 2t$	$x(t) = -1,25t^2$		

Q.19: l'expression littérale V_M de la vitesse de (S) au point M en fonction de g,r et α avec $\alpha = \widehat{(CA,CM)}$ s'écrit sous la forme :

Q.20: en appliquant la deuxième loi de newton montrer que (S) quitte la trajectoire AMNB au point N, quand l'angle $\alpha_m = (\widehat{CA,CN})$ prend la valeur:

(A): $\alpha_m = 48,2^{\circ}$ (B): $\alpha_m = 38,2^{\circ}$ (C): $\alpha_m = 58,2^{\circ}$ (D): $\alpha_m = 45^{\circ}$ (E):autre réponse